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The double-torsion testing technique for fracture toughness and slow crack growth
determination has been critically reviewed. The analytical compliance and finite element stress
analyses of the double-torsion test specimen are summarized. The fracture toughness and
crack growth testing procedure using this test configuration is described along with the
applicable relationships. The strengths and limitations of this testing technique vis-à-vis other
standardized techniques have been critically evaluated. While the double-torsion test method
has some limiting features it has been demonstrated that its applicability is not limited as long
as these are addressed correctly. Recommendations for conducting double-torsion experiments
have been provided and potential avenues for improvement of this test method have been
identified. It is concluded based on the review that standardization of this test method is
required in order to make it more practicable. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Double-torsion is a powerful testing technique for
fracture mechanics characterization of materials. This
testing methodology was introduced in the late 1960s [1,
2] and since then it has gained considerable popularity
due to the relatively simple and inexpensive experimental
set-up associated with it. The test configuration consists
of symmetric four-point loading around a crack or a
notch, on one end of a rectangular plate; this produces
torsional deformation in the two plate halves. One
distinguishing feature of this loading configuration
is that the stress intensity factor is, at least as a first
approximation, independent of crack length for a range
of crack lengths in the test specimen. This implies that
double torsion testing is ideally suited for the evaluation
of opaque and non-reflective materials where crack
length measurements could be difficult to make. For the
same reason, the double-torsion set-up is amenable for
testing in high temperature and controlled environments.
Another reason for the popularity of the double-torsion
test method, especially for slow crack growth studies,
is the relative stability of crack extension. This is once
again due to the fact that the stress intensity change at
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the tip of a growing crack in double-torsion is not nearly
as dramatic as other testing configurations such as single
edge notch bend (SENB) or compact tension (CT).

The mechanical properties that are evaluated by double-
torsion testing include fracture toughness and slow crack
growth behavior, although cyclic fatigue studies have also
been reported. A wide range of materials have been char-
acterized by double-torsion testing. These include ceram-
ics (e.g. alumina [3–6], zirconia [7, 8], hydroxyapatite [9],
mullite [10, 11], silicon nitride [12, 13], cordierite [14],
silicon carbide [15–17]), glasses [18], composites [19–
22], concrete and cement [23], Ni-base superalloys [24],
steels [25], polymers [26–30], polycrystalline diamond
[31], geological materials (e.g., lava rocks [32–34]), dry
plaster [35], dental materials [36, 37], magnetic ferrites
[38, 39], fuel cell materials [40], contact lens materials
[41] and chemical vapor deposited diamond [42].

Good reviews of double-torsion testing are available in
the literature and they are focused on the analytical [43],
experimental [44] and practical aspects [45] of this test
technique. These reviews and several investigators have
stressed the importance of exercising caution when inter-
preting double torsion testing data, particularly because
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this test method has not been standardized. In recent years,
several corrections have been proposed to the original
analyses of the double-torsion test given by Evans and
co-workers [25, 46]. Additionally, this testing technique
is being applied to new materials and occasionally with
modified configurations (e.g. [41]). In light of the above,
the present review is organized in the following manner.
The linear crack length-compliance analytical relation-
ship that is the cornerstone of this test method and the
expression for stress intensity factor will be discussed in
the next section. This is followed by a review of finite
element studies of this test configuration including re-
cent studies that incorporate three dimensional analyses
[47]. The methodology for fracture toughness and fatigue
(static and cyclic) testing will be explained and the appli-
cable relationships will be presented. The strengths and
limitations of this testing technique have been critically
evaluated. This is followed by a discussion of the relevant
corrections that have been proposed to the conventional
analysis of double-torsion in order to increase the accu-
racy of this test method. The overview is concluded with
recommendations and identification of potential areas for
further development of the double-torsion testing tech-
nique.

2. Analytical analysis of the double-torsion
loading geometry

Fig. 1 is a schematic representation of the double-torsion
test specimen while Fig. 2 is a picture of a double-torsion
test specimen and loading fixture. Fig. 1a provides a
schematic view of the test set-up and loading configura-
tion. Early test specimen designs often included a groove
along the length of the test specimen in order to guide
the growth of the crack but recent work has shown that
careful alignment of the test specimen and fixture obviate
the need of the machined groove [45]. Furthermore, the
presence of the groove leads to effects that are still not
fully characterized and it also requires a modified analy-
sis. Fig. 1b is a schematic drawing of a bar with a rectan-
gular cross-section (after [25]) that represents the elastic
torsional deformation in the halves around the cracked
portion of the test specimen. If it is assumed that the two
rectangular torsion bars in the test specimen deform in-
dependently and also that all displacements imposed on
the test specimen exclusively generate torsional deforma-
tion in the individual bars, an analytical expression for the
compliance of the test specimen can be obtained.

The total angle of twist (θ) resulting from a torque T on
a circular bar with polar moment of inertia, Ip and shear
modulus, G is given by the following expression [48]

θ = TL

GIp
(1)

where, L represents the total length of the torsion bar.
Derivation of a similar expression for bars of rectangu-

Figure 1 (a) A schematic view of the double-torsion test specimen and
loading arrangement. (b) A schematic of the deformation in the individual
rectangular bars.

Figure 2 Example of an articulated test fixture and double-torsion test
specimen.

lar cross-section requires the application of the theory of
elasticity. Williams and Evans [25] have shown that if
the width of the test specimen (S) is much larger than its
thickness (t) and if the length of any one of the rectangu-
lar bars is represented by the crack length (a), we obtain
by recognizing that T = (P/2)Sm, the torsional strain (θ)
given by

θ ≈ �

Sm
≈ 3Sm Pa

St3G
(2)

where, � is the load-point displacement and its value is
small compared to the moment arm Sm (the symbols have
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been identified in Fig. 1). Equation 2 can be rearranged to
give the analytical expression for the compliance (C) of a
double-torsion test specimen

C ≈ �

P
≈ 3S2

ma

St3G
(3)

Fuller [43 ] derived a more exact version of Equation 3
with a finite beam thickness correction factor ψ(τ ) given
by

C ≈ 3S2
ma

St3Gψ (τ )
(4)

where, τ = 2t/S is the thinness ratio and for values up to τ

= 1, a simplified expression with an accuracy better than
0.1 percent is given by [43]

ψ = 1 − 0.6302τ + 1.20τ exp (−π/τ ) (5)

The validity of this thickness correction factor has been
experimentally confirmed with the evaluation of glass ce-
ramic test specimens [49]. This factor can be significant
for thick beams (relative to width) and arises due to con-
tact stresses between the two rectangular bars. If it is
further assumed that the shape of the crack front remains
unchanged as the crack propagates, then the following
expression is obtained for the elastic strain energy release
rate (G) [50]

G = P2

2t

(
dC

da

)
= 3P2S2

m

2St4Gψ
(6)

where the Young’s modulus is E = 2G (1 + ν),
where ν is Poisson’s ratio. With the application
of the linear elastic fracture mechanics (LEFM) re-
lationship [50]

K = (
E ′G

)1/2
(7)

where, E′ = E/(1 − ν2) for plane strain and E′ = E for
plane stress, the expression for stress intensity factor takes
the following form

K = P Sm

(
3

St4 (1 − ν) ψ

)1/2

for plane strain (8a)

K = P Sm

(
3 (1 + ν)

St4ψ

)1/2

for plane stress (8b)

The stress intensity factor given by Equation 8 is a func-
tion of the applied load, the test specimen geometry and
Poisson’s ratio but independent of crack length. The lat-
ter characteristic is one of the most attractive features of

double-torsion testing. The independence of the stress in-
tensity factor value with crack length, however, is valid
only for a range of crack lengths in the double-torsion test
specimen because edge effects lead to a deviation from
the linear crack length-compliance relationship.

Experimentally, it has been found for several materi-
als that the compliance varies with crack length in the
following manner [25, 44, 46]

C = �

P
= Ba + D (9)

where, B and D are scaling constants. The experimen-
tal form of the compliance relationship is slightly differ-
ent from the expression in Equation 3. While this does
not alter the form of the stress intensity relationship, it
does have implications for slow crack growth measure-
ments. The linear compliance-crack length relationship
and other assumptions involved in the derivation of the
analytical expression for compliance have been exam-
ined in Section 7. In the next section, these analytical
expressions are compared to predictions obtained with fi-
nite element stress analyses of the double-torsion testing
configuration.

3. Finite element stress analysis of the
double-torsion loading geometry

The first comprehensive finite element stress analysis
of the double-torsion test specimen was performed by
Trantina [51]. This analysis concluded that most assump-
tions inherent in the derivation of the analytical expres-
sion are reasonable. The stress intensity factor calculation
from the analytical analysis Equation 8 was shown to be
nearly equal to the value obtained from the finite element
stress analysis. Additionally, it was shown that the stress
intensity factor remains nearly constant (to within 5%)
in the range of crack lengths; a > 0.55∗S and unbroken
ligament lengths of (L − a) > 0.65∗S. This implies that
the range of crack lengths for which the stress intensity
factor is independent of the crack length is a function of
the length to width (L/S) ratio of the test specimen. For
L/S = 2, the middle 40% of the test specimen displays
crack length independent stress intensity whereas for L/S
= 3, the middle 60% of the test specimen displays this
property.

More recently, Ciccotti and co-workers [32, 33, 47,
52] performed detailed three-dimensional finite element
stress analyses for “large” double-torsion test specimens
(L > 17 cm and S > 6 cm) and concluded that appre-
ciable deviations occurred from the classical analytical
solution predictions of strain energy release rate (G in
Equation 6). They provided correction factors to account
for experimental variables such as crack shape, groove
width and depth, notch length and test specimen geom-
etry and found deviations (up to 40%) in the value of
strain energy release rate (G) from the analytical solution
[47]. Of all the effects considered, the effect of test spec-
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imen geometry on the calculated stress intensity factor
was found to be the most significant and complex. They
provided tables of correction factors for various combina-
tions of values of thickness (t): width (S): length (L). No
general conclusions could be obtained from their analy-
sis except that the discrepancies in stress intensity values
predicted by analytical and numerical solutions decrease
with decreasing the thickness of the test specimen [52].
Additional finite element studies on smaller sized test
specimens having commonly used length to width ratio
of 2:1 or 3:1 and dimensions representative of experi-
mental double-torsion test specimens are necessary. This
would help in standardized test specimen designs with
well-defined operational range of constant stress intensity
regions.

4. Double-torsion testing for fracture toughness
determination

Fracture toughness can be determined in double-torsion
testing simply by loading a pre-cracked test specimen
rapidly and recording the maximum load at failure (PIC).
The fracture toughness expression is obtained by substi-
tuting the failure load in Equation 8

KIC = PICSm

(
3

St4 (1 − ν) ψ

)1/2

for plane strain

(10a)

KIC = PICSm

(
3 (1 + ν)

St4ψ

)1/2

for plane stress (10b)

There are, however, some experimental aspects that need
to be considered both during precracking and fracture
toughness testing. The tip of the precrack should be in
the region where stress intensity factor is independent of
crack length. A small precrack leads to an artificially en-
hanced fracture toughness value and a small remaining
ligament length results in a value lower than the fracture
toughness of the material [44]. This can be avoided by
making a starter notch with a length such that any crack
that initiates from it is in the constant stress intensity re-
gion. It is important to conduct the fracture toughness test
on a precracked test specimen since a blunt notch (without
the precrack) would not allow equivalent stress intensifi-
cation at the notch tip. Precracking is generally done at a
slow crosshead displacement rate until a load drop can be
discerned or a load plateau is reached where the increase
in load is balanced by relaxation of the test specimen from
crack growth. A notch with smaller width and a tapered
end, such that it goes from full thickness to a thin liga-
ment at the tensile surface, facilitates precracking at loads
lower than PIC [45]. Other methods of precracking, such
as indenting the region in front of the notch to generate
sharp pre-cracks contiguous to the machined notch, have
also been successfully applied in double-torsion testing

[3, 53]. The pre-crack originates from the tensile side of
the double-torsion specimen and the shape of the result-
ing crack evolves before reaching a stable crack front. It is
therefore desirable to reach the steady state crack front be-
fore performing fracture toughness or slow crack growth
measurements. Depending on the material and specimen
geometry, the stable crack front shape may be reached
after 2–5 mm of pre-crack size ahead of the notch.

The determination of fracture toughness using a pre-
cracked test specimen should be carried out at a fast load-
ing rate so as to avoid slow crack growth. This is because
slow crack growth prior to failure would lead to artifi-
cially lower values of fracture toughness. For example,
it has been shown that the fracture toughness value of
yttria stabilized zirconia (YSZ) increases with increas-
ing crosshead displacement rates until a displacement
rate of 4 mm/min and thereafter remains constant [54].
The experimental error in measuring the values of vari-
ables included in the formula for fracture toughness in
double-torsion is comparable to that of six other geome-
tries (chevron notched four-point bend, double cantilever
beam, direct crack measurement, single edge notched ten-
sion, single edge notched specimen tested in three-point
bend and single edge notched tension, single edge notched
specimen tested in four-point bend) and better than inden-
tation strength by four-point bending [55]. In summary,
double-torsion testing provides fracture toughness values
comparable to those obtained from other standardized test
methods provided the above-mentioned experimental re-
quirements are satisfied.

5. Double-torsion testing for crack growth study
One of the most important characteristics of the double-
torsion testing approach is that the rate of slow crack
growth can be derived without having to monitor the crack
length on a continuous basis. Additionally, the cyclic fa-
tigue crack growth response of a material can be deter-
mined if crack length is monitored continuously. The ini-
tial analyses for load relaxation and constant displacement
rate techniques were given by Evans [46] although several
corrections have since then been proposed to refine that
approach (Section 8). We describe in the present section,
four commonly employed procedures for crack propaga-
tion studies with the double-torsion testing configuration.

5.1. Load relaxation technique
The load relaxation technique [46] is commonly employed
to indirectly obtain the sub-critical crack propagation be-
havior of brittle materials. According to this technique,
a pre-cracked double-torsion test specimen is loaded to
below the expected fracture load (0.90–0.95∗PIC). The
crosshead of the testing machine is then held at a fixed
position and the increase in compliance of the test speci-
men from sub-critical crack growth leads to a relaxation
of the load with time. To illustrate this concept, Fig. 3
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Figure 3 An illustration of temporal load variation obtained from a load
relaxation test in a double-torsion test specimen of 3-YSZ.

presents a load relaxation curve for a test specimen of
3-YSZ. Mathematically, this can be described by differ-
entiating Equation 9 with respect to time to obtain the
following relationship

d�

dt
= (Ba + D)

d P

dt
+ P B

da

dt
(11)

where, the left hand side (LHS) of the equation equals zero
if the crosshead is arrested. Additionally, if � remains
constant, and the tip of the crack remains in the crack
length independent stress intensity region, then

P (Ba + D) = Pi (Bai + D) = Pf
(
Ba f + D

)
(12)

where, the subscripts ‘i’ and ‘f’ denote the initial and
final loads and crack lengths. The physical meaning of
Equation 12 is that the increase in the compliance of the
test specimen due to increase in crack length is exactly
compensated by its temporal decrease in load. By setting
the LHS of Equation 11 equal to zero and rearranging
it with Equation 12, an expression for the crack growth
velocity (v = da/dt) can be derived

v = −Pi

P2

(
ai + D

B

)
d P

dt
(13)

which reduces to the following simplified expression for
the case ai � (D/B), i.e. large crack lengths or high mod-
ulus materials

v = −ai Pi

P2

d P

dt
(14)

Even though Equation 14 is popularly applied, it is noted
that in many cases the assumption that ai is much larger
than (D/B) is not true. Equation 14 should be applied
when material availability is at a premium and experimen-
tal compliance-crack length curves cannot be generated.
However, the slow crack growth exponents calculated us-
ing Equations 13 or 14 will remain identical. For a given

load and average velocity, the corresponding stress inten-
sity value can be calculated from Equation 8. In principle,
the entire v-K curve can be obtained from a single load
relaxation experiment. In practice, however, this method-
ology works better at relatively higher crack growth rates
(>10−6–10−7 m/s [44]) due to temperature fluctuations
affecting load measurements at very low velocities. This
method is also susceptible to spurious factors, such as
load train relaxation, which is discussed further in Sec-
tion 7. It is for this reason that it has been recommended
to generate complementary portions of the v-K curve by
combining the load relaxation technique with one of the
two techniques discussed below [56].

5.2. Constant load technique
The earliest application of the double-torsion loading con-
figuration to measure slow crack growth was through the
constant load method [57]. The average crack velocity
corresponding to the stress intensity factor, which is cal-
culated from the applied constant load, can be obtained
by measuring the crack length before and after the ex-
periment and the elapsed time. The main disadvantage
of this technique is that only one data point can be ob-
tained per experimental run since crack length measure-
ments are required. This technique, however, is suitable
for the calculation of very low crack velocities where load
relaxation measurements cannot be performed [44]. Ad-
ditionally, at elevated temperatures, inelastic deformation
and machine relaxation render constant load crack growth
measurements as the most reliable technique to measure
slow crack growth rates [44].

5.3. Constant displacement rate technique
Evans [46] introduced another technique for evaluating
slow crack growth behavior that involved changing the
displacement rate incrementally. In this technique, the
crosshead is moved at a constant rate and the load value
is allowed to reach a plateau where the increase in load
from crosshead movement is balanced by relaxation of the
test specimen load from crack growth. If the plateau load
value is given by P, Equation 11 reduces to the following
form (with dP/dt ∼ 0)

d�

dt
= PBv (15)

The crack velocity can be calculated from the displace-
ment rate and the value of the load plateau. The main
disadvantage of this technique is also that only one data
point can be obtained per test run even though crack length
measurements are not required. By changing the displace-
ment rate over a few decades, Evans showed that the slow
crack growth exponent can be determined from this test-
ing methodology [46].

Weiderhorn [58] and later Quinn and co-workers [3,
59] successfully combined the constant displacement
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rate technique with the load relaxation technique to ob-
tain slow crack growth information without having to
make any crack length measurements. In this method,
the crosshead is moved at a slow, constant rate un-
til the load decrease due to slow crack growth exactly
offsets the load increase due to crosshead movement.
The peak load (Pi) and the crosshead displacement rate
(d�/dt) can now be used to obtain the crack veloc-
ity (vi) according to Equation 15. In this version of
the test method, the crosshead is arrested at the peak
load and a load relaxation experiment is subsequently
carried out. The initial crack velocity (vi) from the
load relaxation experiment can be obtained by substi-
tuting P = Pi in Equation 13. Assuming that the ini-
tial velocity obtained by application of Equations 13
and 15 is the same, the following relationship is
obtained:

vi = (d�/dt)

Pi B
= −

(
d Pi

dt

)
(Bai + D)

Pi B
(16)

This relationship allows the expression of the compliance
of the specimen at the beginning of the load relaxation
experiment as [58]

Bai + D = − (d�/dt)

(d Pi/dt)
(17)

The initial compliance is related to the compliance at any
other instant in the load relaxation experiment according
to Equation 12. Substitution of Equation 17 in Equation 13
therefore, allows the calculation of crack velocity accord-
ing to

v =
(

d�/dt

B

) (
Pi

d Pi/dt

)(
dp/dt

P2

)
(18)

Since Equation 18 does not involve any crack length
term, it is ideally suitable for applications such as
elevated temperature and/or controlled environment
testing.

5.4. Cyclic fatigue crack growth
measurements

There have been few reports of cyclic fatigue studies us-
ing the double-torsion testing methodology [45, 60–62].
This is due to the fact that cyclic fatigue studies typically
require continuous monitoring of crack length with load-
ing cycles, e.g. [61]. In principle, the crack length in a
double-torsion test specimen can be estimated from the
compliance of the test specimen. However, it has been
reported that accurate determination of the crack length
from the compliance of the test specimen can be difficult
in practice, especially for brittle materials [45]. This is at-
tributed to the small load point displacements associated
with the deformation of stiff materials and the inherent
noise associated with thermal fluctuations, for example.

Chevalier and co-workers [53, 61, 63–69] have exten-
sively studied the static and cyclic crack growth behavior
of zirconia using the double-torsion configuration. Using
this testing approach they found the existence of thresh-
olds for crack growth (in both static and cyclic conditions)
and the presence of environmentally-assisted degradation
mechanisms [61]. It has also been demonstrated that a
cyclic effect exists in several materials in terms of faster
crack growth at equivalent value of stress intensity fac-
tor when compared to stress corrosion alone [61, 62]. A
cyclic effect may also exist in that the crack propagation
threshold values are lower under cyclic fatigue loading
[61].

6. Advantages of the double-torsion testing
technique

Some of the advantageous characteristics of the double-
torsion testing configuration for fracture toughness and
slow crack growth characterization have already been
identified in the previous sections. The simple test speci-
men geometry and loading configuration involving four-
point loading of a rectangular bar results in a low-cost
setup [43]. Even the rear supports of the test specimen
(Fig. 1) are not critical since they are designed only for
convenience in mounting and aligning the test specimen
[25]. The most important characteristic of this testing con-
figuration, as mentioned earlier, is that the stress intensity
factor resulting from it is independent of (or has a weak
dependence on) the crack length in the mid-section of the
test specimen. The above factors are responsible for the
fact that the application of this test method is commonly
extended to elevated temperatures and controlled envi-
ronments, e.g. [15]. In addition, it has been noted that a
low compliance loading system is not required to apply
the compressive loads required for double torsion testing
[34]. Although the tapered width double cantilever beam
test specimen also has the property of the stress intensity
factor being independent of crack length, these test speci-
mens require a lot more material for machining compared
to a flat double-torsion test specimen [70]. The double-
torsion test specimen geometry is also ideally suited for
material manufactured in a planar configuration such as
polycrystalline diamond compacts [31]. This testing con-
figuration is also uniquely suitable for determining the
fracture toughness of rocks [33], adhesive joints [71] and
diffusion bonds [72].

In double-torsion test specimens, precracking is
achieved in a controlled manner and can be detected from
deviations from linearity in the load versus displacement
curve [43]. Unlike double-torsion, some other geometries
for measuring fracture toughness involve separate fixtur-
ing for precracking test specimens (e.g. the precracked
beam method).

Some researchers have claimed that values of the frac-
ture surface energy calculated from double-torsion (DT)
testing are more accurate when compared with other con-
figurations such as double cantilever beam (DCB) or sin-
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gle edge notch bend (SENB) testing [73]. Others have re-
ported comparable values of fracture energy release rates
obtained by DT and DCB test specimens [74] whereas
others have reported that the DCB test specimen geom-
etry has the highest tendency for slow crack growth and
yields higher values of fracture toughness compared to
SENB or DT test specimen geometries [75]. For hot-
pressed SiC, for example, comparable KIC values were
reported from Hertzian indentation and double-torsion
techniques [76]. However, uncertainties in the fracture
toughness determination from indentation techniques are
well documented and therefore fracture toughness values
from double-torsion are deemed more reliable than those
attempted from indentation methods [54].

As mentioned in Section 5, slow crack growth can be
investigated in three complementary modes using dou-
ble torsion without the use of crack opening displace-
ment gages. Evans and Williams [25] have demonstrated
that slow crack growth characteristics are extremely com-
parable for several materials using the DT and DCB
test specimen configurations. Bhaduri [18] reported that
the slow crack growth exponent calculated from inden-
tation techniques is comparable to that calculated from
double-torsion. While studying stress corrosion cracking
in steels, Briggs et al. [77] found that an optical method
for measuring crack growth rates and the load relaxation
version of the double-torsion test method gave similar
results. Quinn and Quinn [59] carried out a compari-
son of the published slow crack growth exponent val-
ues in hot pressed silicon nitride between room tem-
perature and 1400◦C. They demonstrated that in some
instances, the slow crack exponent values were similar
between double-torsion and other test methods such as
static and dynamic fatigue. Quinn [3] also demonstrated
the coincidence of the slow crack growth exponent be-
tween double torsion and static fatigue testing for alumina
at 1000◦C. Slow crack growth characteristics calculated
from static/dynamic fatigue experiments are indirect cal-
culations whereas in the double-torsion test the slow crack
growth behavior of long cracks can be deduced directly
[9]. It has been shown by Sudreau et al. [78] that indi-
rect methods can induce large errors in interpretation of
slow crack growth characteristics. Double torsion has also
been successfully applied to investigate the time depen-
dant fracture of composite materials [19, 20] and tough
polymers [21].

7. Limitations of the double-torsion testing
technique

It is important to be aware of the major assumptions in-
volved in double-torsion testing that could limit its valid-
ity under certain circumstances. One assumption involves
the choice of state of plane strain or stress to describe the
stress intensity at the crack tip according to Equation 8a
or 8b. While earlier researchers favored the plane strain
expression for fracture toughness calculation [43,45] re-
cent calculations are based on the plane stress expression,

Figure 4 The experimental variation of compliance with crack length in a
double-torsion test specimen leads to the mid-region in the test specimen
with stress intensity values independent of crack length. The theoretically
predicted compliance variation with crack length has also been illustrated
in this figure.

e.g. [40]. The justification for the former is that plane
strain fracture toughness is suitable for brittle materials.
Fracture modality selection (plane stress/strain) can in-
duce errors in the calculation of the stress intensity factor
according to Equation 8. The other assumption is that the
loading at the tip of the crack is purely mode I with a
negligible mode III component [43]. This was shown to
be a reasonable assumption by Evans and co-workers [25,
46], who demonstrated the experimental critical strain en-
ergy release rate (Gc) compared well with mode I values
calculated from Equation 7.

The most important characteristic of the double-torsion
test specimen is the lack of dependence of the stress inten-
sity factor on crack length in approximately the mid-range
of crack lengths in the test specimen. Outside this region,
the compliance-crack length relationship becomes non-
linear due to end effects and this has been schematically
illustrated in Fig. 4 [43]. One assumption in the analyti-
cal derivation of this relationship is that the torsion bars
deform independently with no contact stresses and negli-
gible deflection beyond the crack tip. The reason for the
slopes of compliance versus crack length curve (Fig. 4)
becoming lower than that of the constant slope region
at smaller crack lengths is due to interaction between
the two torsion bars in the test specimen contributing
significantly to the total deformation of the torsion bars
[25]. At small remaining ligament lengths, the elastic de-
flection of the uncracked portion of the test specimen
does not remain negligible thus increasing the slope of
the compliance-crack length curve in Fig. 4. Even for
the so called region of constant driving force, a number
of researchers have found that the stress intensity fac-
tor could be a function of the crack length [4, 5, 14,
44, 56, 63, 64, 79, 80]. Very often, a hysteresis in the
v-K curve calculated from load relaxation is shown as
indication of the dependence of stress intensity factor on
crack length [44, 56, 63, 64, 79, 80]. The dependency of
stress intensity factor on crack length has been attributed
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to several factors which can be broadly classified as
follows:

• Intrinsic effects—These effects arise from the mate-
rial microstructure or the interaction of the material
with the environment. Example of such effects would
be the presence of a glassy phase on the grain bound-
aries [79], transformation toughening at the crack-tip
[53, 81], time dependant deformation in the process
zone [56] and R-curve effects such as friction in-
duced bridging of grains, reinforcements from fibers
or phase transformations [5, 6, 56].

• Extrinsic effects—These effects are due to the me-
chanical evolution of the stress intensity factor with
crack growth. Use of Equation 8 to calculate the stress
intensity factor may, therefore lead to errors. In such
situations, finite element stress analysis or alterna-
tive approaches (see Equation 20 in Section 8) are
required to calculate the stress intensity factor. An
extrinsic effect could arise from the uncracked com-
pressive portion of the double-torsion test specimen
[63].

In addition, the crack profile in double torsion is curvilin-
ear and therefore, the stress intensity factor is expected to
vary along the crack front. It has been contended that the
crack front geometry is material specific [82] and depen-
dent on the slow crack growth exponent [83]. Researchers
have argued that the shape of the crack front does not
change in the constant stress intensity region [25, 29, 84]
and therefore a crack shape correction factor can be used
to correct for these effects (see Section 8).

The geometry of the double-torsion test specimen has
not been standardized and in some cases this might lead to
the crack propagation characteristics influenced by the test
specimen dimensions [44, 60]. For example, it is known
that a test specimen with thickness greater than (S/6) can
lead to an interaction between the two moment arms that
can not be neglected [44, 85]. It is also known that the
region of constant stress intensity decreases in size if the
length to width ratio of the test specimen decreases [85,
86]. Large deflections or big roller pins also change the
effective moment arm length of the test specimen as dis-
cussed in the next section [30]. Quinn and Quinn [59]
demonstrated that surface finish had an effect on the re-
sults of double-torsion experiments on a large Plexiglas
test specimen. Most of the recent applications of double-
torsion testing have been carried-out using test specimens
without a guiding groove, and rightly so, since the ad-
ditional stress concentration due to the groove leads to
effects that are not well understood [45]. The crack is
likely to not remain straight and wander if the loading
system is not well aligned and balanced.

As mentioned earlier, the load relaxation method can
be affected by spurious effects [44, 56, 79]. This is es-
pecially true in situations involving substantial machine
relaxation, very low crack velocities [44], high temper-
ature and crack-tip plasticity [11]. The problem can be

Figure 5 A schematic of the cross section of a crack in a double torsion test
specimen showing the curved crack front. Geometric corrections associated
with the curved profile have been proposed [46, 84]. The intersection angle
of the crack with the tensile surface has been exaggerated in this figure.

partially circumvented by subtracting the background re-
laxation of the system or alternately by using the constant
load technique [44]. The errors due to end effects can arti-
ficially decrease the slope of the v-K plot or the slow crack
growth exponent by as much as 30% [52, 86]. If extrinsic
effects are significant, even in the so called “constant driv-
ing force regime”, a systematic error in the slope of the
v-K plot up to 50% can be observed [63]. Additional cor-
rections in the slow crack growth rates need to be applied
in the presence of crack bridging [12], blunting, branching
and deflection [87]. We discuss in the following section,
corrections that have been proposed to the conventional
analysis of double torsion in order to address some of the
problems discussed in this section and thereby increasing
the precision of this testing method.

8. Corrections proposed to the conventional
analysis of double-torsion

Several corrections have been proposed for the quantita-
tive analysis of data obtained by the double-torsion test
method. One of the most relevant corrections, for slow
crack growth studies, has been for the curvilinear crack
profile schematically illustrated in Fig. 5. Since the crack
extends further along the face of the test specimen with
the maximum tensile stress, Evans [46] proposed the fol-
lowing first order correction for the effect of crack profile
on velocity given by Equation 14

v = φ
−ai Pi

P2

d P

dt
(19)

where, φ = t/
√

(t2 + �a2) with t representing the thick-
ness of the test specimen and �a the difference in crack
lengths between the two faces (Fig. 5). This correction
approximates the curved crack front with a straight line.
Shetty, Virkar and Harward [88] pointed out that since
the crack front is curved and the crack velocity is defined
orthogonal to the crack front, the velocity must decrease
continuously along the front starting from a maximum
value at the leading edge. Based on the curved crack pro-
file, they derived an expression for the average crack ve-
locity as a weighted average of the components of the
local velocities along the average direction [88]. Pollet
and Burns [84] provided the most accurate expression to
correct crack velocity values due to the crack front curva-
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ture. If the angle between the test specimen surface and
the normal to the crack front is locally given by α (Fig. 5),
then the crack velocity correction (φ in Equation 19 can
be shown to be [84]

φ =

1

t

t∫
0

{sin α (x)}1/ndx




n

(20)

where, t is thickness of the specimen, n is the slow
crack growth exponent and the expression for φ re-
duces to the correction proposed by Evans [46 ] if the
crack front is approximated as a straight line with α

remaining constant. The value of φ can be obtained
from experimental measurements of the crack profile.
Ciccotti and co-workers [32, 33, 47, 52] performed fi-
nite element simulations incorporating geometric features
such as the relative test specimen dimensions and the
curved crack front to provide tables from which a linear
corrective factor could be obtained. This factor could be
applied to conventional analysis [46] of slow crack growth
with the double-torsion testing method.

The correction to the stress intensity factor based on
the thickness of the beam relative to its width has already
been discussed Equation 8. Hine, Duckett and Ward [89]
extended this thickness effect by correcting for large de-
flections and the size of the moment arm in case of finite
radii of the loading points. Their analysis yielded the fol-
lowing expression for stress intensity factor, for the case
of plane stress

K = P

(
3� (1 + ν)

St4ψ

)1/2

×
[

Sm − (R + r + t)(sin θ + θ cos θ)

θ

]1/2

(21)

where the terms have the same meaning as in Equation 8.
In addition, � represents the crosshead displacement, R
and r are the radii of supporting and loading balls and θ

is the angle the torsional arm makes with the horizontal
surface of the undeformed test specimen. Equation 21
reduces to Equation 8b for the case of small values of
radii R and r with small deflections where � ∼ Smθ .
The issue of large deflection in double-torsion has been
theoretically [90,91] and experimentally [30] addressed
by researchers investigating the behavior and properties
of polymers and polymer based composites.

The standard rectangular double-torsion test speci-
men configuration and analysis has been reported to be
modified by investigators for specialized applications.
McAuliffe and Truss [41] tested semi-circular test speci-
mens made from polymeric ophthalmic contact lens ma-
terial and demonstrated that the fracture toughness, for

the case of plane stress, was given by

KIC = PICSm

(
3 (1 + ν)

(r2 − a2)t4

)1/2

(22)

where r is the radius of the test specimen and a is the
crack length and the thickness correction factor has been
ignored. As might be expected, material specific consid-
erations are commonly applied to modify the analytical
expressions for double-torsion outlined in the previous
sections. For example, Donners and co-workers [38 , 39]
while studying the fracture of MnZn ferrites demonstrated
that the expression for fracture toughness is a function of
the environmental conditions and determined by the ad-
sorption or reactive species on the crack tip. Radovic and
Lara-Curzio [40] have demonstrated a clear relationship
between porosity of materials for solid oxide fuel cell ap-
plications and their fracture toughness. The variation in
the local crack-tip driving force based on deflection of
the crack tip during a double-torsion experiment has also
been addressed [87].

Chevalier and co-workers have reported in a series of
papers [61, 63–68, 92] a crack length dependence of stress
intensity factor while studying the behavior of zirconia
and alumina. According to them, the corrected expres-
sion for stress intensity factor (Kcorr) in the double-torsion
testing configuration can be given by

Kcorr = K

(
a

ao

)m/k

(23)

where K is given by Equation 8, ao is the notch length,
m = 6 and k = 32 are constants for the test specimen
geometry and material considered. They have attributed
the minor crack length dependence of stress intensity fac-
tor to the unbroken ligament on the compressive side of
the test specimen and therefore the stress intensity cor-
rection proposed in Equation 23 could be a function of
the dimensions of the test specimen and its loading con-
figuration [63 ]. In addition, Ebrahimi et al. [5, 6] have
demonstrated that a non-linear compliance-crack length
relationship exists for alumina because of crack bridg-
ing and R-curve phenomena. They demonstrated that by
subtracting the R-curve effect, a unique v-K curve could
be obtained for alumina with average grain size varying
between 2 and 13 µm. Based on the corrections proposed
and other results presented in the literature, we make prac-
tical recommendations for double torsion testing and sug-
gest work that could lead to the standardization of this test
technique.

9. Recommendations for double-torsion testing
and future work

Researchers experienced with the practical aspects of dou-
ble torsion testing recognize that good alignment is the key
to successful application of this test method [3, 45]. A well
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aligned loading fixture distributes torsion symmetrically
in the two bars. A misaligned system, evidenced by cracks
that do not run straight from the notch has uneven torsion
in the bars resulting in mixed-mode loading of the crack,
and results in artificially enhanced KIC values. As men-
tioned earlier, the presence of a guiding groove modifies
the real stress intensity factor at the crack tip and leads to
uncertainty and inaccuracy in fracture toughness and slow
crack growth measurement. Based on the present survey,
it is recommended that machined grooves be avoided in
all situations. Other experimental aspects that increase the
repeatability of double-torsion testing are a stiff machine,
test specimens machined to tight tolerances and with well
finished surfaces, good environmental control, ball bear-
ing loads, homogeneous material along crack extension
region and a data acquisition system with high accuracy
[33, 45, 81]. For slow crack growth studies via load re-
laxation, a high throughput data acquisition system may
be necessary to accurately capture the rapid initial relax-
ation in loads resulting from high growth rates. There
is agreement among researchers on machining a tapered
notch on the test specimen in order to facilitate precrack-
ing at loads lower than the fracture load. As mentioned
in Section 4, an important practical consideration in pre-
cracking is to allow the crack to reach the steady state
front before conducting fracture toughness or slow crack
growth measurements [63].

It is important to use high loading/displacement rates
during fracture toughness determination [54]. This is es-
pecially important for materials which are susceptible to
slow crack growth. For slow crack growth studies, it is
helpful to know the fast fracture load of a test before-
hand so that load relaxation tests can be carried out by
arresting the crosshead at a load such that K > 0.9 KIC

[33, 60]. Caution should be exercised when interpreting
crack growth data obtained from load relaxation alone
especially at elevated temperatures and/or at very low ve-
locities (<10−7 m/s) [44]. It is advised that the slow crack
growth behavior of a material can be evaluated by us-
ing a combination of the load relaxation and the constant
load or the constant displacement rate techniques [56].
It is also helpful to obtain an experimental compliance-
crack length curve from at least six to eight test specimens
with different initial crack lengths [25, 85]. Apart from
providing scaling constants for accurate crack velocity de-
termination, these results also provide an estimate of the
deviation between the theoretical compliance and its ex-
perimental value based on the load train and test specimen
geometry.

It is to be noted that the double-torsion testing procedure
only gives information for the crack propagation behav-
ior of macro-flaws. This test method therefore, can not
be directly applied to lifetime prediction in cases where
the growth of micro-flaws constitutes a significant portion
of the total lifetime. One area where the potential of the
double-torsion method has not been fully utilized is to ob-
tain R-curve behavior and bridging stresses of materials
[4–6]. As noted earlier, bridging stresses cause the compli-

ance versus crack length calibration of double-torsion test
specimens to become non-linear [5]. If accurate R-curve
behavior is obtained, the slow crack growth behavior of
micro-cracks can be indirectly estimated with the double-
torsion testing technique by subtracting the possible ef-
fect of the reinforcements on macro-cracks. The infor-
mation generated by the double-torsion testing procedure
can therefore, be applied to component life prediction.

In the absence of standardized guidelines, double-
torsion test specimens of different dimensions have
been used for fracture investigations. Tait, Fry and
Garrett [45] surveyed the test specimen dimensions for
published data in the literature and concluded that a length
to width ratio of two to three has been a popular choice. A
length to width ratio of two gives less material in the mid-
dle for slow crack growth experiments. Longer length to
width ratios may be applied for slow crack growth studies
in order to increase the size of the region with nearly con-
stant stress intensity. That survey [45] also found that the
thickness values of the test specimen typically lie between
1/6 and 1/15 of the test specimen width. Test specimens
thicker than S/6 should be avoided since it leads to exper-
imental complications such as those arising from an in-
teraction between the torsion bars. It is the opinion of the
authors that detailed finite element studies on ungrooved
test specimens with sizes typical of double-torsion test
specimens in practice are required to design a standard-
ized test specimen with well-defined constant stress in-
tensity region. The fracture modality, i.e., whether plane
stress or plane strain expression for stress intensity fac-
tor in Equation 8 is applicable, should also be addressed
for the standard specimen design. Efforts to compare the
fracture toughness results from double-torsion and other
standardized test methods (e.g., ASTM’s C1421) are un-
der way. These studies coupled with round-robin testing
among laboratories are important steps towards standard-
ization of this test procedure.

10. Concluding remarks
The double-torsion testing methodology is a simple, yet
powerful test method to characterize the fracture behavior
of materials and the applicability of this test method is not
limited as long as its limitations are addressed appropri-
ately. The authors believe that because of its attributes and
popularity, efforts should be focused on the standardiza-
tion of this test method.
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